
Strings in Python

Computers store text
as strings

G A T T A C A
0 1 2 3 4 5 6

>>> s = "GATTACA"

s

Each of these are characters

Why are strings important?
• Sequences are strings

• ..catgaaggaa ccacagccca gagcaccaag ggctatccat..

• Database records contain strings

• LOCUS AC005138

• DEFINITION Homo sapiens chromosome 17, clone
hRPK.261_A_13, complete sequence

• AUTHORS Birren,B., Fasman,K., Linton,L.,
Nusbaum,C. and Lander,E.

• HTML is one (big) string

Getting Characters

G A T T A C A
0 1 2 3 4 5 6>>> s = "GATTACA"

>>> s[0]
'G'
>>> s[1]
'A'
>>> s[-1]
'A'
>>> s[-2]
'C'
>>> s[7]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: string index out of range

>>>

Getting substrings

G A T T A C A
0 1 2 3 4 5 6

>>> s[1:3]
'AT'
>>> s[:3]
'GAT'
>>> s[4:]
'ACA'
>>> s[3:5]
'TA'
>>> s[:]
'GATTACA'
>>> s[::2]
'GTAA'
>>> s[-2:2:-1]
'CAT'
>>>

Creating strings

"This is a string"
"This is another string"

""
"Strings can be in double quotes"

‘Or in single quotes.’
'There’s no difference.'

‘Okay, there\’s a small one.’

Strings start and end with a single or double
quote characters (they must be the same)

Special Characters and
Escape Sequences

Backslashes (\) are used to introduce special characters

>>> s = 'Okay, there\'s a small one.'

The \ “escapes” the following single quote

>>> print s
Okay, there's a small one.

Some special characters
Escape Sequence Meaning

\\ Backslash (keep a \)

\' Single quote (keeps the ')

\" Double quote (keeps the ")

\n Newline

\t Tab

Working with strings
>>> len("GATTACA")
7
>>> "GAT" + "TACA"
'GATTACA'
>>> "A" * 10
'AAAAAAAAAA'
>>> "G" in "GATTACA"
True
>>> "GAT" in "GATTACA"
True
>>> "AGT" in "GATTACA"
False
>>> "GATTACA".find("ATT")
1
>>> "GATTACA".count("T")
2
>>>

length

concatenation

repeat

substring test

substring location

substring count

Converting from/to strings
>>> "38" + 5
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects
>>> int("38") + 5
43
>>> "38" + str(5)
'385'
>>> int("38"), str(5)
(38, '5')
>>> int("2.71828")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int(): 2.71828
>>> float("2.71828")
2.71828
>>>

Change a string?
Strings cannot be modified

They are immutable
Instead, create a new one

>>> s = "GATTACA"
>>> s[3] = "C"
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment

>>> s = s[:3] + "C" + s[4:]
>>> s
'GATCACA'
>>>

Some more methods
>>> "GATTACA".lower()
'gattaca'
>>> "gattaca".upper()
'GATTACA'
>>> "GATTACA".replace("G", "U")
'UATTACA'
>>> "GATTACA".replace("C", "U")
'GATTAUA'
>>> "GATTACA".replace("AT", "**")
'G**TACA'
>>> "GATTACA".startswith("G")
True
>>> "GATTACA".startswith("g")
False
>>>

Ask for a string
The Python function “raw_input” asks

the user (that’s you!) for a string

>>> seq = raw_input("Enter a DNA sequence: ")
Enter a DNA sequence: ATGTATTGCATATCGT
>>> seq.count("A")
4
>>> print "There are", seq.count("T"), "thymines"
There are 7 thymines
>>> "ATA" in seq
True
>>> substr = raw_input("Enter a subsequence to find:
")
Enter a subsequence to find: GCA
>>> substr in seq
True
>>>

Assignment 1
Ask the user for a sequence then

print its length

Enter a sequence: ATTAC
It is 5 bases long

Assignment 2
Modify the program so it also prints

the number of A, T, C, and G
characters in the sequence

Enter a sequence: ATTAC
It is 5 bases long
adenine: 2
thymine: 2
cytosine: 1
guanine: 0

Assignment 3
Modify the program to allow both

lower-case and upper-case characters
in the sequence

Enter a sequence: ATTgtc
It is 6 bases long
adenine: 1
thymine: 3
cytosine: 1
guanine: 1

Assignment 4
Modify the program to print the

number of unknown characters in
the sequence

Enter a sequence: ATTU*gtc
It is 8 bases long
adenine: 1
thymine: 3
cytosine: 1
guanine: 1
unknown: 2

